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Abstract 
The maturing of Augmented Reality (AR) and Virtual Reality (VR) related technologies has enabled 
increasingly sophisticated investigations into their applications. An exciting recent development is in 
the investigations into remote collaborations where geographically distributed participants can be 
equipped with distinct hardware configurations, such as handheld AR, immersive VR, or typical PCs, 
while interacting in an integrated and homogeneous environment, e.g., [1], [2]. These are cross reality 
collaborations because the participants operate in a spectrum of technologically enabled realities 
across the augmented physical world and digital virtual spaces [3].  

Cross reality collaboration is a new and stimulating field with many enthusiasts, especially among 
undergraduate students who grew up with the technology. However, even with increasingly accessible 
hardware, due to a lack of dedicated infrastructural support, the barrier for developing a simple remote 
cross reality investigative application remains significant. For this reason, explorations of related ideas 
are off limit to many undergraduate students who can typically dedicate only one or two academic 
terms for such activities.   

This paper first examines the requirements of and articulates a novel hybrid peer-to-peer (P2P) 
infrastructure specifically for supporting the rapid prototyping of remote cross reality ideas. These 
requirements are used as the design guideline for the Augmented Space Library (ASL). Following the 
design discussion, the paper details an implementation of the ASL where the frontend peer-to-peer 
Application Programming Interface (API) model is presented as an extension to Unity, an accessible 
and free-of-charge technology for undergraduate students, with a hidden backend server based on the 
GameLift service of Amazon Web Services (AWS).  

The paper then describes and analyzes the results of six undergraduate student projects based on the 
ASL. These projects, each with two to three team members, were brainstormed, proposed, 
prototyped, tested, and refined in the period of one academic term. Interestingly, and coincidentally, 
with the current COVID-19 situation, all collaborations of the projects were carried out remotely. 
Though with areas for future improvements, the results from these projects demonstrated the validity 
of the articulated considerations and design decisions, and that ASL is indeed an effective tool for 
supporting undergraduate students in investigating cross reality collaboration applications. 

Keywords: Augmented Reality, Virtual Reality, Cross Reality, Hybrid P2P, Network API, Unity, Rapid 
Prototype.  

1 INTRODUCTION & RELATED WORK 
The recent resurgence of Augmented and Virtual Reality (AR/VR) related technologies, especially 
applications in non-entertainment related industries, indicates that AR/VR technologies are maturing 
[4]. As the field continues to develop, AR/VR technologies are increasingly being relied upon as 
foundations for investigations across reality spaces where solutions span the continuum between 
virtual and physical spaces [5]. For example, the support for multiple remote interior designers to 
collaborate with an on-site owner in furnishing her currently empty laboratory space; where, some 
remote designers are equipped with immersive VR while others are interacting on a PC or via sensing 
interfaces such as the Microsoft Kinect, and the on-site owner is equipped with immersive AR [3].  

Remote cross reality collaborations involve technologically enabled communal environments where 
participants can cooperate to manipulate shared objects to accomplish joint tasks. Investigation of 
ideas in this area requires specific and non-trivial infrastructures including network communication, 
object state synchronization, and hardware reality device interfaces. For time constrained enthusiasts 
with simple ideas, including hobbyists and typical undergraduate students, the infrastructure 
requirements can be a formidable barrier prohibiting the exploration of simple and creative ideas. In 
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particular, for undergraduate students the time available for examining ideas is usually limited to one 
or two academic terms.  

Existing research in remote cross reality collaboration focuses on many important issues, including 
specialized hardware, e.g., [6], system configurations, e.g., [7], design efforts, e.g., [8], the details of 
many creative applications, e.g., [1]–[3], [9], [10] and the approaches to analyze the results e.g., [11]. 
While exciting and enlightening, these efforts and their corresponding results do not elaborate on the 
requirements of the infrastructure to support such investigations. Although general support for remote 
information sharing is relatively mature, well-established solutions are typically based on the traditional 
client-server [12] or peer-to-peer [13] models, and as will be discussed, may not align well with the 
needs of time-constrained remote cross reality investigations. For these reasons, even with the rapidly 
decreasing costs in hardware and increasing qualities in software development kits (SDK), the barrier 
for starting a remote cross reality collaboration investigation remains high.  

This paper articulates the infrastructural considerations for supporting rapid prototyping of remote 
cross reality collaborative investigations by identifying relevant disciplines and analyzing their 
characteristics. These considerations fuelled the design decisions of the Augmented Space Library 
(ASL) [14], a SDK extension to the Unity game engine [15] where the logistics of connecting remote 
participants are hidden and investigators can proceed with examining their ideas of collaboration 
across realities without concerns of network connection and object sharing solutions. 

The results from six ASL based one-academic-term undergraduate projects indicated that, though with 
areas for improvement, the articulated considerations and the associated solutions do address and 
lower the hurdle for, and, that ASL is an effective tool supporting novice investigators. 

2 INFRASTRUSTURE CONSIDERATIONS 
An infrastructure that supports the development of investigative remote cross reality collaboration 
applications must present a coherent application programming interface (API) that integrates utilities 
across multiple disciplines. A coherent and effective API would allow the investigators to focus on idea 
explorations and not become distracted by the remote sharing aspect. The first step to understand the 
necessary requirements for such an API is to analyze the characteristics of needs in the involved 
fields. 

2.1 Remote  
For an application to facilitate the collaboration of geographically distributed participants, it must 
support straightforward connections of the participants and sharing of objects. The fields of remote 
access and object sharing are relatively mature with many well-established solutions. In the context of 
cross reality collaboration, the following are essential considerations. 

• Participant connection: The participants are likely to be trusted, distributed geographically, 
and may not know the technical setup and specifics locations of each other. Such participants 
must be able to locate each other and establish a collaborative session effortlessly. 

• Application state synchronization: The presentation of different realities mainly involves 
graphical geometric objects in 3D spaces. The investigative nature of these applications implies 
that the actual application states may vary widely. System synchronization mechanisms must 
provide elaborate support for graphical objects and be flexible to support arbitrary state 
information. 

2.2 Cross Reality 
Cross reality refers to the fact that, depending on the technological setup of each participant, they can 
experience different versions of reality across the continuum between actual physical world and virtual 
digital space. There are two essential considerations.  

• Device independence: The different realities are delivered via various hardware configurations; 
thus, the distinct hardware devices must be supported by the underlying infrastructure.  

• Common referencing coordinate system: The referencing coordinate system of an 
augmented world is typically and conveniently defined to be the AR device’s camera position 
and orientation when the application is first started. With multiple participants on different AR 
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and VR devices collaborating across distances, the supporting system must allow a clear and 
consistent way of defining a common coordinate system. 

2.3 Collaboration 
The infrastructure should be optimized to support collaborative behavior patterns including mutual 
learning and coordination [16]. In a collaborative session, participants are likely to observe one 
another, take turns, and work alongside one another. Under such a model, contention over shared 
objects is likely to be infrequent. Though not a technical requirement, this observation is an important 
guide in system design. 

2.4 The Investigative Applications  
The last category of consideration is the functionality of the actual investigative application. Upon 
analyzing recent efforts, e.g., [1]–[3] and based on our own experiences, e.g., [17], the following 
observations can be drawn. 

• Object behavior: Objects in these applications are typically either static, e.g., a part of the 
common environment and do not change once created, or dynamic where they can be 
manipulated by the participants. Though there may be objects with pre-defined autonomous 
behaviors, e.g., driven by a physics simulation engine, unlike typical interactive games, such 
objects may not be present and when they do exist, the number of such objects are likely to be 
low. 

• Participant-Object interaction: Participants typically select an object and then perform intuitive 
manipulations such as moving, re-orientating, or re-sizing. This observation leads to two 
implications. First, only the transforms of 3D objects need be synchronized where the potentially 
complicated geometry can be built-in as part of the application and thus need not be 
synchronized during runtime. For example, 3D models of geometrically complicated cars can be 
distributed as part of the application and during runtime only the transform of the car object 
needs to be synchronized. Second, to properly support mutual learning and coordination, 
participants must be able to clearly identify object ownership so that they can effortlessly 
transition between being an observer and manipulator. Simple visual feedback, such as 
highlight color or texture, is an excellent way to indicate ownership of objects. 

• Straightforward functionality: Investigative applications are typically focused in scope, 
designed to explore specific ideas in relative isolation. For example, in the collaboration with 
remote interior designers to furnish the empty laboratory space example, the focus is on 
understanding effective distant object manipulation [3], the investigation is not concerned with 
many other aspects such as graphical user interface design, support for physics simulations, or 
detailed high-quality rendering. In this way, the corresponding infrastructure should also be of 
limited scope and ensure completeness of support within those scopes, e.g., elaborate, and 
efficient support for object transform synchronization without specific support for rendering 
quality control. 

Lastly and very importantly, the infrastructure must be simple, with a flat learning curve that supports 
rapid prototyping. An important goal of this work is to support time-constrained undergraduate 
research projects.  

3 DESIGN DECISIONS 
The discussed considerations point to an API that amalgamates three areas: network architecture, 
information sharing, and the rapid prototyping of interactive graphical applications that support multiple 
AR/VR devices. The essential design decisions for each are discussed next. 

3.1 Network Architecture 
The underlying infrastructure must allow straightforward establishment of collaboration sessions and 
support efficient and flexible application state management among all the participants.  

With a client-server model, a participating client can connect to a collaborative session with the sole 
knowledge of the well-known server and does not need to be concerned with the details of any other 
participants. For this reason, the application state would be maintained by the server where 
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communications with the clients are essentially state update requests. Because of the ease of 
establishing connections and centralized application state control, the well-established network 
infrastructure solutions for supporting remote interactive graphical applications are all based on the 
client-server model e.g., [18], [19], [20]. While a centralized state management solution facilitates 
consistency and efficiency, it is also true that a client-server-based application consists of essentially 
two separate solutions—one each for the client and the server, and therefore can be challenging for 
novices to rapidly prototype simple ideas.  

In stark contrast, a peer-to-peer (P2P) model requires all participants to explicitly connect to each 
other to establish a session, and each peer is responsible for ensuring a coherent and properly 
synchronized application state. While there are investigations of collaborative applications based on 
the P2P model including interactive 3D applications, e.g., [21], [22], distributed virtual environment 
simulations e.g., [23], and multimedia applications, e.g., [24], the focus of these projects are on their 
respective applications and do not address general infrastructural needs. Although joining a network 
session can be logistically challenging, once established and with proper synchronization support, 
application state management for each peer can be similar to that of a single participant application.  

An ideal solution would be a hybrid network model with the client-server approach for establishing 
collaborative sessions, and the P2P solution for managing the application state by each participant. 
With such a model, an investigator can begin by exploring ideas and developing simple applications 
for one participant, and generalize their solution to increase the number of participants by simply 
allowing more P2P users. The investigator would never have to worry about the application state 
consistency, the communication requirements, or the geographic location of other participants.  

3.2 Information Sharing 
With the application state being maintained by individual participants, updates of shared objects must 
be synchronized. A straightforward approach is object ownership locks where only the owners of 
object locks can send update information for the corresponding object [25]. The control of this locking 
mechanism can either be distributed, e.g., the current owner must release a lock voluntarily [26], or 
centralized, e.g., a server grants and reclaims locks [25]. The former respects each owner but risks 
starvation, the latter allows a centralized policy but can significantly increase the server complexity. 

While the length of time that a participant may hold on to an object can vary, the collaborative behavior 
patterns suggest that the transfer of ownership is likely to be an orderly sequence [16]. For this 
reason, the locking mechanism can assume a relaxed and systematic ownership transfer and focus on 
simplicity in both implementation and usage. A hybrid approach where locks can be voluntarily 
released by current owners, and when necessary, forcefully reclaimed by the server can be 
straightforward to implement and easy to work with in non-contentious settings.  

A trivial implementation of such a system would allow the server to mediate object locks with a simple 
system of per-object states. By default, objects are owned by the server where object ownership 
arbitration is as follows. 

• Objects not owned: Claims of unowned objects will always be granted with the per-object state 
recording the current owner. 

• Objects owned: Claims of currently owned objects will result in a wait object state and the 
server initiating the reclaiming of ownership lock. Clients always honor the server reclaims and 
send acknowledgement of ownership release. When server regains ownership, the currently 
waiting participant will be granted ownership. 

• Objects in wait state: Claims of objects currently in wait state will always be denied. 
• Object contention: At any instance, if the server should receive more than one ownership 

claim requests, only one will be honored and the rest denied. There are two important reasons 
behind this strategy. The first is to guarantee definitive responses to the interactive client 
applications. Without an ownership wait queue in the server, the client application is guaranteed 
a success or failure response within the expected network delay and is therefore never in a 
state of owning a lock sometime in the unknown future. The second reason is simplicity—
without explicit queues, the server state management can be kept simple and elegant. 

With this ownership arbitration scheme, a contentious object will constantly be in a wait state 
impacting system productivity. However, it is assumed that collaborative participants will seldom 
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compete for object ownership. In all cases, contentious or otherwise, because of nondeterministic 
network delays, object ownership starvation is unlikely. 

3.3 Rapid Prototyping 
The goal of the API is to support the quick prototyping of focused investigative interactive graphical 
applications that support different AR/VR devices and allow participants from different geographical 
locations to work together. It is fortunate that the goal of supporting the building of interactive graphical 
applications aligns well with that of typical game engines [27]. Additionally, many well-established 
game engines support multiple popular AR/VR devices [28]. 

For these reasons, a straightforward approach would be to develop the API as an extension to an 
existing game engine. In all cases, the support of rapid prototyping with a flat learning curve requires 
that the API be simple, straightforward to install, and well-documented with ample and useful tutorials.  

4 THE AUGMENTED SPACE LIBRARY (ASL) 
Based on the considerations and design decisions discussed, the Augmented Space Library (ASL) 
was built to support the rapid prototyping of investigative remote collaborative applications where the 
participants can be equipped with heterogeneous devices [14]. This section overviews the API 
implementation and the SDK delivered. 

To the investigators who are building the investigative applications, ASL is a collection of functions 
similar to any API. ASL developers need not be aware of the existence of a separate server. 

4.1 Choice of Unity 
Unity is a popular commercial game engine with a friendly graphical user interface and is relatively 
straightforward to learn [15]. The Unity developer ecosystem includes elaborate API documentations 
[29], a vibrant user community with many extension tools and tutorials [30], sensible educational 
licenses [28], and support and plans to continue to improve the support for all existing and future 
major AR and VR devices [31]. Because of these factors, and due to our own experiences with using 
the system in academic settings [32], Unity was chosen to be the hosting platform for ASL. 

It should be noted that while Unity is a game engine, Unity applications built with ASL may not be 
games. Though investigations into cross reality often include game-like elements, including real-time 
interactions with virtual 3D objects. These elements are meant to assist the exploration of 
collaboration across the different hardware mediums.  

4.2 The Frontend API 
The two key factors governing the API design and implementation are the support for 1) rapid 
prototyping with a flat learning curve and 2) interactive graphical applications with focused scope. The 
API must be simple with in-depth support of functionality within that scope. In this context, the scope of 
the API is to support synchronization of the graphical application state. These considerations resulted 
in three general categories of functions. 

• 3D Object Support: As discussed, the need is to synchronize the results of interactive 
manipulations: the transforms and not the geometry of the 3D objects. ASL strives to provide 
the complete spectrum of functions supporting objects and their transforms including creation, 
deletion, ownership control, and incremental and absolute updates of transforms. Besides the 
need to acquire an object ownership before manipulation, the sharing and synchronization 
aspects of these objects are completely transparent to the developers. Synchronization of 
object color and texture are also supported for straightforward feedback of object ownership. 

• General State Support: Due to the investigative nature of these applications, it is impossible to 
predict the needs for synchronizing the state of any application. A generic approach would be to 
support the synchronization of a byte data block. Based on our experience, application states 
are frequently encoded as a collection of numbers. To avoid excessive data type conversions, 
ASL chooses to support the synchronization of a floating-point data bock. Participants can 
communicate custom arrays of floating-point numbers they encoded for any arbitrary purpose. 

• AR Specific Support: ASL wraps Google’s ARCore library [33] to support the synchronization 
of ARCore’s cloud anchors to share a common reference coordinate system amongst all 
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collaborators. To avoid confusions over different coordinate systems, ASL offers distinct and 
explicit supports for the selection of AR scanned reference planes and regular 3D objects.  

It is important to note the emphasis on simplicity of over support for general utility. For example, the 
AR selection utility in different coordinate system is the only network-independent utility function 
defined in the ASL API. This philosophy is true even for synchronization support—there is no explicit 
support for the sharing of 3D object geometries, e.g., the vertices and material properties of a car. The 
assumption is that geometric objects, including ones in the common environment, will be defined as 
part of the application where during runtime, only the transformation of these objects are of interest. 
When necessary, e.g., to communicate an AR application scanned geometry, at runtime applications 
can communicate object geometry information via the custom floating-point data block. 

Notice that the there are no explicit functions supporting the establishment of collaborative sessions. 
The ASL startup process guides participants via an intuitive GUI interface to identify their unique 
session identifier and automatically establish connections.  

4.3 The Backend Server 
There are many excellent network solutions, e.g., GameSparks [19], or GameLift [20], even ones 
specifically designed for Unity developers, e.g., Photo Engine [18]. However, these are all based on 
the client-server architecture. ASL’s server is based on the AWS GameLift services [20] where 
participant connection requests are serviced by server-less AWS Lambda functions and object 
ownership control and object state broadcasting are supported by a lightweight server [34]. In this 
way, the lightweight server acts more as a relay with minimal state information, e.g., which participants 
own which objects, and not as a typical server in the client-server model. The correctness of the per-
object state ownership control requires the system to guarantee packet orders and delivery. For this 
reason, all communications are based on TCP sockets.  

It is important to re-emphasize that the existence of the backend server is completely transparent to 
ASL application developers. An investigator can simply focus on refining their ideas, developing the 
application based on their ideas, and at no time needs to be concerned that there is a backend server. 

4.4 Documentation and Tutorials 
ASL is released with detailed documentation, including guides on installation and configuration, 
explanations on API functions, tutorials for programming with individual API functions, and more 
elaborate tutorials on approaches to combine the functions to build simple functionality [35]. 

5 RESULTS 
ASL has gone through two stages of testing: basic quality assurance (QA) and programmability. 
Towards the end of the second phase, a survey was conducted with response from nine (9) of the 
developers. 

5.1 Quality Assurance and SDK Tutorials 
QA testing includes basic unit and correctness stress testing. Unit tests are trivial iterations over 
parameters of individual or groups of related functions. These test cases are created to cover every 
function and are maintained throughout the development process. In the end, these sets of test cases 
serve as excellent secondary documentation and simple tutorials for the investigators to experiment 
on and learn from.  

The stress tests are designed to verify the ownership control scheme and assess system performance 
capacity. In the case of ownership verification, test cases with continuous automated creation, 
manipulation, and deletion of shared objects among multiple participants were built and ran over 48 
hours to verify complete and correct synchronized states. Performance test results, though dependent 
on actual network bandwidth and traffic, showed that ASL can easily support a small number of 
participants, e.g., 5, sharing and manipulating several hundred shared objects simultaneously. Similar 
to the unit test cases, these tests serve as excellent secondary tutorials on how ASL functions can be 
combined to accomplish simple tasks. 
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Figure 1. Left: AR Ballista Challenge credit: Saiful Salim. Right: AR Pet Farm credit: Sean Miles and Marc Skaarup 

5.2 Programmability Testing  
Driven by their personal interests, eleven senior-level computer science undergraduate students 
volunteered, working individually or in teams, on six independent investigative projects based on ASL. 
Each project, from ideation, implementation, end-user testing, to final refinements lasted exactly one 
academic quarter, or 10 weeks. All project ideas were from the students, where some had end-user 
VR experience, but none had prior AR/VR programming exposure or previous experience working with 
ASL. When the projects began, the students only had each other and the existing ASL documentation 
for reference. Of the six projects, one was based on AR-only devices, three were based on AR/PC 
collaboration, and two were VR devices with potential PC collaboration. Please refer to the Cross 
Reality Collaboration Sandbox (CRCS) Research Group website for details of these projects [36].  

Fig. 1 shows the screenshots from the AR-only application (left), and an example of AR/PC 
collaboration (right). On the left of Fig. 1, the top two screenshots are views from the two AR devices 
and the bottom photograph shows Player 1 interacting with his AR device. This application challenges 
the two players to control their ballista through their AR devices to hit the opponent’s ballista. 

The two screenshots on the right of Fig. 1 are from the AR Pet Farm project, where the AR 
participants can scan and create farm areas in the physical world, share the area with PC participants, 
and raise and nurture pets in these areas. In this case, the left screenshot shows an AR user created 
a farm area on the desk in front of the keyboard and shared that area with the PC player on the right. 
The two players are collaborating in raising and nurturing a dog, and what appears to be a T-Rex 
dinosaur. 

Fig. 2 shows an investigation into a collaboration application with VR devices where participants must 
work together to solve multiple puzzles and escape the virtual room. The top two screenshots are 
views of what the player sees and the bottom photos are the respective players. The top-left 
screenshot shows Player 1 observing Player 2’s attempt at solving the pipe-puzzle, and the top-right 
screenshot shows Player 2 interacting and manipulating the pipes. 

The other projects include two collaborative applications between AR participants and distant PC 
players. The first project challenges the participants built a bridge over a living-room floor turned into a 
lava field, and the second was focused on competing to collect coins on surfaces scanned from the 
AR participants’ environment. The last project was a VR collaboration application in a Minecraft-like 
environment where the participants must mine and build to reach a destination castle. 

5.3 Survey Results 
A survey questionnaire was instituted at the end of these projects to assess students’ experience. The 
results indicated general agreement on ease in establishing network sessions and success in 
synchronization support. Also discovered was the difficulty in integrating with Unity’s physics engine 
and the lack of VR device specific support, especially in UI and debugging [14]. 
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Figure 2. VR Escape room credit: Cody Thayer, Isaiah Snow, and Yuto Akutsu. 

5.4 Discussion 
It is ironic that with the current COVID-19 situation, these projects proceeded with all participants 
collaborated remotely in the entire development process. Within the first week each project team was 
able to successfully prototype simple PC only collaborative applications where they can manipulate 
shared objects remotely. The first two to three weeks were dedicated to idea evaluation and 
prototyping with corresponding hardware. The first draft version of applications began to appear by the 
mid-quarter, at around fifth weeks’ time frame. In all cases, the first draft version was single-user and 
remote participants were included only in later releases when the core functionalities were verified.  

The drastically different applications, the different combinations of realities involved, the rapidly 
ramped up prototypes, the remote and collaborative natures of both the development process and 
end-results, the success of the unpolished investigative applications, and the positive feedbacks from 
the developers all attest to the success of ASL meeting the goal of supporting the rapid prototyping of 
remote cross reality collaboration investigations. 

6 CONCLUSION 
This paper identified that, to support rapid prototyping of investigations into cross reality collaboration, 
the underlying infrastructure should support 1) effortless establishments of collaborative sessions; 2) 
efficient synchronization for graphical objects and generic data blocks; 3) different AR/VR devices; 4) 
explicit establishment of common referencing coordinate system. Additionally, it is reasonable to 
assume friendly and trustworthy participants where shared objects are manipulated in coordinated 
fashions.  

These observations lead to a hybrid client-server and P2P network architecture that offers easy 
participant connections and facilitates per-peer application state management, supporting 
straightforward prototyping without special handling of shared objects. The assumption on 
collaborative shared object manipulation allows object ownership control mechanism to be optimized, 
focusing on simplicity. A custom object ownership arbitration system is proposed and implemented to 
ensure trivial server implementation and guarantees deterministic response to the client. 

The derived solution is implemented in the ASL system as a SDK extension to the Unity game engine. 
The extensive testing by six groups of undergraduate students with drastically different projects 
verifies the validity of the identified considerations, the design of the solutions, and the effectiveness of 
the ASL to be an infrastructure for novice investigators. 

Future improvements for ASL are in areas that were aggressively optimized in favor of API simplicity. 
For example, the support for autonomous behaviors of shared objects where five of the six projects 
implemented crude solutions for, e.g., wandering of pets in the farm. Another functionality would be 
the synchronization according to time such that real time events can occur at the exact same moment. 
It is important to note that while these functionalities do not explicitly exist, they can be implemented 
based on the generic floating-point data block. It will be an on-going optimization decision to balance 
between functionality and API simplicity. Finally, as the SDK for the AR/VR devices continue to 
improve, it is critical to constantly re-evaluate the integration and support for these devices. 

0995



ACKNOWLEDGEMENTS 
The Microsoft Mixed Reality Academic Seeding Program donated all of the HTC Windows Mixed 
Reality headsets. Thanks to the adventurous and courageous undergraduate students who 
volunteered and participated so enthusiastically in this investigation, even during the very difficult 
pandemic lockdown. The first author and the AR equipment involved in these projects are supported 
by generous grants from the Computing and Software System Division, at the University of 
Washington Bothell. 

REFERENCES 
[1] S. A. Alharthi, K. Spiel, W. A. Hamilton, E. Bonsignore, and Z. O. Toups, “Collaborative Mixed 

Reality Games,” in Companion of the ACM CSCW and Social Comp., Oct. 2018, pp. 447–454. 

[2] J. Müller, J. Zagermann, J. Wieland, U. Pfeil, and H. Reiterer, “A Qualitative Comparison Between 
Augmented and Virtual Reality Collaboration with Handheld Devices,” in Proceedings of Mensch 
und Computer 2019, Hamburg Germany, Sep. 2019, pp. 399–410. 

[3] M. Tanaya et al., “A Framework for analyzing AR/VR Collaborations: An initial result,” in 2017 
IEEE International Conference on CIVEMSA, Jun. 2017, pp. 111–116. 

[4] B. Marr, “The 5 Biggest Virtual And Augmented Reality Trends In 2020 Everyone Should Know 
About,” Forbes. https://www.forbes.com/sites/bernardmarr/2020/01/24/the-5-biggest-virtual-and-
augmented-reality-trends-in-2020-everyone-should-know-about/ (accessed Jan. 04, 2021). 

[5] L. Avila and M. Bailey, “Augment Your Reality,” IEEE CG&A, vol. 36, no. 1, pp. 6–7, Jan. 2016. 

[6] S. Wong, S. Singhal, and C. Neustaedter, “Smart Crew: A Smart Watch Design for Collaboration 
Amongst Flight Attendants,” in Companion of the 2017 ACM CSCW and Social Computing, Feb. 
2017, pp. 41–44. 

[7] E. Peters et al., “Design for Collaboration in Mixed Reality Technical Challenges and Solutions,” 
Nov. 2016, doi: 10.1109/VS-GAMES.2016.7590343. 

[8] K. M. Everitt, S. R. Klemmer, R. Lee, and J. A. Landay, “Two Worlds Apart: Bridging the Gap 
Between Physical and Virtual Media for Distributed Design Collaboration,” NEW Horiz., no. 5, p. 8, 
2003. 

[9] T. Teo, L. Lawrence, G. A. Lee, M. Billinghurst, and M. Adcock, “Mixed Reality Remote 
Collaboration Combining 360 Video and 3D Reconstruction,” in Proceedings of the 2019 CHI 
Conference on Human Factors in Computing Systems, May 2019, pp. 1–14. 

[10] C. Elvezio, M. Sukan, O. Oda, S. Feiner, and B. Tversky, “Remote collaboration in AR and VR 
using virtual replicas,” in ACM SIGGRAPH 2017 VR Village, Jul. 2017, pp. 1–2. 

[11] C. Y. Wang, L. Drumm, C. Troup, Y. Ding, and A. S. Won, “VR-Replay: Capturing and Replaying 
Avatars in VR for Asynchronous 3D Collaborative Design,” in 2019 IEEE Conference on VR and 
3D User Interfaces, Mar. 2019, pp. 1215–1216. 

[12] “Client–server model,” Wikipedia. Dec. 25, 2020, Accessed: Jan. 04, 2021. [Online]. Available: 
https://en.wikipedia.org/w/index.php?title=Client%E2%80%93server_model&oldid=996262483. 

[13] “Peer-to-peer,” Wikipedia. Dec. 13, 2020, Accessed: Jan. 04, 2021. [Online]. Available: 
https://en.wikipedia.org/w/index.php?title=Peer-to-peer&oldid=993999508. 

[14] G. Smith, “Augmented Space Library 2: A Network Infrastructure for Collaborative Cross Reality 
Applications,” Master’s, University of Washington, United States -- Washington, 2020. 

[15] “Unity (game engine),” Wikipedia. Jan. 04, 2021, Accessed: Jan. 04, 2021. [Online]. Available: 
https://en.wikipedia.org/w/index.php?title=Unity_(game_engine)&oldid=998256828. 

[16] B. Wasson and A. Mørch, “Identifying collaboration patterns in collaborative telelearning 
scenarios,” Educ. Technol. Soc., vol. 3, Jan. 2000. 

[17] A. Hitchcock and K. Sung, “Multi-view augmented reality with a drone,” in Proceedings of the 24th 
ACM Symposium on VRST, Tokyo Japan, Nov. 2018, pp. 1–2. 

[18] “Introduction | Photon Engine.” https://doc.photonengine.com/en-us/pun/v1/demos-and-
tutorials/pun-basics-tutorial/intro (accessed Jan. 04, 2021). 

0996



[19] “GameSparks.” https://www.gamesparks.com/ (accessed Jan. 04, 2021). 

[20] “Dedicated Game Server Hosting - Amazon GameLift - Amazon Web Services,” Amazon Web 
Services, Inc. https://aws.amazon.com/gamelift/ (accessed Jan. 04, 2021). 

[21] A. G. Martínez, A. H. Orozco, C. F. Ramos, and M. Siller, “A Peer-to-Peer Architecture for Real-
Time Distributed Visualization of 3D Collaborative Virtual Environments,” in 2009 13th IEEE/ACM 
International Sym. on Distributed Simulation and Real Time App., Oct. 2009, pp. 251–254. 

[22] H. Suzuki and R. Huang, “Virtual real-time 3D object sharing for supporting distance education 
and training,” in 18th International Conference on AINA 2004., Mar. 2004, vol. 1, pp. 445-450. 

[23] S. Rueda, P. Morillo, and J. M. Orduna, “A Peer-To-Peer platform for simulating distributed virtual 
environments,” in 2007 Intl. Conf. on Parallel and Distributed Systems, Dec. 2007, pp. 1–8. 

[24] J. Li, “Peer-to-peer multimedia applications,” in Proceedings of the 14th ACM international 
conference on Multimedia, Oct. 2006, pp. 3–6. 

[25] Chen-Chi Kuo, J. Carter, and R. Kuramkote, “MP-LOCKs: replacing H/W synchronization 
primitives with message passing,” in Proceedings Fifth International Symposium on High-
Performance Computer Architecture, Jan. 1999, pp. 284–288. 

[26] H. Fan, H. Zhu, Q. Liu, Y. Shi, and C. Sun, “Shared-locking for semantic conflict prevention in real-
time collaborative programming,” in 2017 IEEE 21st CSCWD, Apr. 2017, pp. 174–179. 

[27] “Game engine,” Wikipedia. Dec. 18, 2020, Accessed: Jan. 04, 2021. [Online]. Available: 
https://en.wikipedia.org/w/index.php?title=Game_engine&oldid=994975794. 

[28] “Best VR Game Engine Software 2020: Compare Reviews on 10+ Software,” G2. 
https://www.g2.com/categories/vr-game-engine (accessed Jan. 04, 2021). 

[29] U. Technologies, “Unity - Manual: Unity User Manual.” https://docs.unity3d.com/Manual/index.html 
(accessed Jan. 04, 2021). 

[30] U. Technologies, “Online and in-person courses & training in 2D, 3D, AR, & VR development | E-
Learning.” https://unity.com/learn (accessed Jan. 04, 2021). 

[31] “Unity XR platform updates - Unity Technologies Blog,” Jan. 24, 2020. 
https://blogs.unity3d.com/2020/01/24/unity-xr-platform-updates/ (accessed Jan. 04, 2021). 

[32] G. Smith and K. Sung, “Teaching Computer Graphics Based on a Commercial Product,” 2019, 
doi: 10.2312/eged.20191031. 

[33] “ARCore,” Google Developers. https://developers.google.com/ar (accessed Jan. 04, 2021). 

[34] “AWS Lambda – Serverless Compute - Amazon Web Services,” Amazon Web Services, Inc. 
https://aws.amazon.com/lambda/ (accessed Jan. 04, 2021). 

[35] Gregory Smith, UWB-ARSandbox/ASL_NoMPsTutorials. https://github.com/UWB-
ARSandbox/ASL_NoMPsTutorials, 2020. 

[36] “Projects | Cross Reality Collaboration Sandbox Research Group.” 
https://sites.uw.edu/crcs/projects/ (accessed Jan. 04, 2021). 

0997




